FermiGrid Design Note
For
Software Rel ease M anagement

and
Software Acceptance Process

Keith Chadwick
16-May-2008

Abstract:

This document describes the software acceptance process that is used by FermiGrid

Document Revision History:

Version | Date Author Comments
0.1 12-Feb-08 | Keith Chadwick | Initid verson.
0.2 05-May-08 | Keith Chadwick | Clean up formatting and content.
0.3 16-May-08 | Eileen Berman Smadl changesto wording.
04 16-May-08 | Keth Chadwick | More wording twesks.
0.5 16-May-08 | Igor Modified some wording, added comments

Mandrichenko

Introduction:

Effective operation and management of FermiGrid requires a dtrict software release
management and software acceptance process in order to insure operation of the
FermiGrid services,

Additiona goas of this processinclude:

Effective tests at production scale.
Ease adminigtration effort by operations group.
Reduce need to contact the developer(s).

In order to support these goa's, software project managers will need to:

Incorporate time to trangtion to operationsin WBS.
I ncorporate documentation (install, operate, capture debug information, upgrade).

We aso need to distinguish between three categories of software releases.
Emergency bug fixes to restore existing functiondity.
Norma routine bug fixes of exiding functiondity.
Extensonsto exigting functiondity.

Developers need to think about running their code on a system that is providing other
services and cannot "just” be rebooted.

Prioritize needed enhancements.

Perform a survey to understand where we are today with respect to this process.
Multiple forms of software packaging/distribution methods shal be accepted. Examples
include pacman, RPM, ups/upd and bare tarbdls.

Softwar e Acceptance Environment:

In generd, there shall be no root access to the production software or service instance by

developers (other than explicitly enabled by FermiGrid personnd during problem
diagnosis and/or resolution).

Softwar e Documentation:

FermiGrid personnd shdl receive a documentation package from the service devel opers
that includes.

1. How toingdl and/or upgrade the service.

2. How to revert back to aprior verson of the service if necessary.

3. How to start the service.

4. How to shutdown the service.

5. How to test core (or essentid) service functiondity (idedlly afull regression test).
6. How to monitor core (or essentia) service functiondity.

7. A description of the service log locations and logging options.

8. A lig of information to capture in the event of problems (debug script?) etc.

9. Other information that is necessary to insure service operation.

It is expected that al of the above documents are “living documents’ — they will be
developed, revised and enhanced as part of the service development and deployment
lifecycle.

Softwar e Development/I ntegration/Production Procedur e:

The service development team must provide a well-defined process (including version
release procedure and regression test suite) as detailed in the process below.

All source code running on production systems must be ‘tagged' such that it can be
identified in the source code management system used by the developers.

Ivm: Although previous paragraph describes commonly accepted as necessary and useful
softwar e devel opment practice, | do not see why this paragraph belongsin thisdocument. E.g. if
no code management systemwas used by devel opers, or code management systemthey use does
not support tagging, why the service is not acceptable for FermiGrid to run ?

Note 1 - The regresson test suite on the [production, integration, development] system
corresponds to the [production, integration, development] software version.

Note 2 - The process below is the process used by FermiGrid to test, integrate and deploy
the SAZ package.

1. Development of the service takes place on development system(s) that are either
operated by the developers or otherwise operated where the developers have root
access.

2. Development verson service passes the “regression test suite” thet is defined and
provided by the developers. Thistest suite may be amanud process or (idedly) an
automated process. The regression test suite must be capable of testing core or
critica portions of service functiondity as wedl as mgor new featuresintroduced in
new release and must dso provide a*“load” or “stress’ test functions, when applicable
and practical. If the regresson test suite is not automated then it must be explicitly
documented to assure that all tests have been performed each and every time that a
rdeaseiscut. If it is not documented, then it never happened. Developers are
responsible for defining test acceptance criteria

3. Thedeveopers perform aforma software verson cut and provide FermiGrid with
pachakge in appropriate format (see Introduction).

4. FermiGrid personnd indd| this verson on the test/integration system(s) using the
ingtructions provided by the developers. Note: Developers may assist in the
inddlation, but any such "assstance’ must be immediatdy entered into the
documentation package by the devel opers.

5. Ted/integration ingtallation passes regression test suite. FermiGrid personne run the
regression tests with the assistance of the devel opers where necessary. Any
“unusud” assstance by the developers must be immediatdy entered into the service
documentation package.

6. Formd acceptance of version release to production by FermiGrid management. (this
has to be specified: based on what criteria?)

7. Service verson ingdlation on production system(s) by FermiGrid personnd.
8. Production installation passes regression test suite.

9. Formal release to operation.

Softwar e Support Infrastructure:

Developers must supply a support infrastructure for “expert” level questions. In the case
of packages that are distributed by the VDT, then thisis the case.

